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1.  Introduction

This document describes and partially derives the theory that is implemented by the 
AeroLS lifting surface analysis program.  Understanding this material is critical to 
proper use of the AeroLS program.  It is especially important to have a good 
understanding of where use of this theory is valid and where it is not.

AeroLS is an aerodynamic lifting surface analysis program.  This means that it 
computes the effects of air flowing around thin (planform and camber only, no 
thickness) wings which are operating at a small angle of attack and sideslip in flow that 
is subsonic, steady, inviscid, and irrotational.

AeroLS is part of a large family of analysis codes that are referred to as “linear aero 
codes” because it assumes that the effects of planform, camber, thickness and friction 
are linearly separable.  This means that these effects can be analyzed separately and 
then added together to give the total forces acting on the vehicle.  AeroLS, at this time, 
only computes the effects of planform and camber.  In reality, all these effects are not 
linearly separable, but for some cases (subsonic, high Reynolds number flow, on well 
designed wings at low lift coefficients), this assumption is not such a bad one and can 
give good 1st order values for educational or quick evaluation purposes.

AeroLS, at this time, makes no attempt to model or make corrections for the effects of 
leading edge suction, tip vortex roll up, wake distortion, or viscous fluid properties.

The coordinate system used by AeroLS is shown in Figure 1.1.  The origin is typically 
located forward of the configuration being analyzed.  The X-coordinate axis runs along 
the longitudinal length of the vehicle and is positive aft.  The Z-coordinate axis runs 
vertically and is positive up.  The Y-coordinate is then found by the right-hand rule and 
is positive to the right of the vehicle (as viewed from behind looking forward).

X

Y

Z

(aft)

(right)

(up)

Figure 1.1:  Coordinate System used by AeroLS
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The approach used by AeroLS is to assume that there is a continuous distribution of 
bound vorticity over a wing surface which generates the forces acting on that wing.  
This bound vorticity can then be approximated by a finite number of discrete vortices 
as shown in Figure 1.2.  The individual “horseshoe” vortices are placed in trapezoidal  
panels which are sometimes called finite elements or lattices.  The procedure used to 
obtain the numerical solution to the flow is termed a vortex lattice method (VLM).  
However, AeroLS differs in some details from many classical VLM’s found in the 
literature.

Y

X

LLE

Typical 
Panel

Bound 
Vortex

Control Point

Trailing 
Vortex

Figure 1.2:  Elemental Panels for Lifting Surface Method (Ref. 3)

Like Classical VLM’s, AeroLS has bound vortex segments that coincide with the 
quarter-chord line of the panel that are aligned with the local sweep angle.  The vortex 
lattice panels are located on the mean-camber surface of the wing and the trailing 
vortices follow the curvature of the wing to the trailing edge before departing to 
downstream infinity.

AeroLS does not linearize the boundary conditions and vortex segments to the wing-
chord plane as is done in most Classical VLM’s, but rather, solves the boundary 
conditions on the mean-camber surface itself.  Also, AeroLS does not make the small 
angle linearizing assumption often used in Classical VLM’s (replacing 

† 

sin(a )  with 

† 

a  in 
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radians and replacing 

† 

cos(a )  with 1, etc.).  This does not mean that AeroLS is valid at 
high angles of attack!  Like all linear aero codes, AeroLS, is only valid in the “linear lift 
region” at low angles of attack and sideslip where the assumptions listed above are 
reasonably valid.

AeroLS assumes that vortices trailing downstream of a wing are straight, parallel to the 
X axis and are not affected by angle of attack, sideslip, or rotational rates.  In reality this 
is not the case, but for most engineering applications, suitable accuracy is obtained by 
making this simplifying assumption.
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2.  Definition of the Panel Normal Vector and Panel Area:

The wing mean camber surface is represented by a system of quadrilateral panels.  The 
method for determining each panel normal vector is straight forward.  However, the 
method for finding the panel surface area is far more complicated than is really 
necessary for a lifting surface code. The reason for this is that the geometry library that 
AeroLS  uses is very general and happens to implement the more formal method 
detailed here.

Since four points selected on a surface may not lie in the same plane, a mean surface 
through the four points is selected to represent the panel.  The method for doing this 
was taken from a combination of Reference 1 and 2.

Let

† 

(xi,yi,zi ) represent the four points on the body surface.
Let

† 

(x 'i , y 'i ,z' i ) represent the four points on the mean surface.

Figure 2.1:  Representation of Mean Surface Through Four Points (Ref. 1)
(x,y,z) = corner points of actual panel, (

† 

x ', y ',z' ) = corner points of mean surface

The mean surface is chosen in the following manner (see Figure 2.1):
1.  The direction of the panel normal is found by taking the cross product of the 

vectors representing the diagonals.

  

† 

ˆ n =
r 
d 31 ¥

r 
d 42r 

d 31 ¥
r 
d 42

(2.1)

Where:
  

† 

r 
d 31 = (x3 -x1)ˆ i + (y3 - y1) ˆ j + (z3 - z1) ˆ k 

  

† 

r 
d 42 = (x4 -x 2)ˆ i + (y4 - y2)ˆ j + (z4 - z2) ˆ k 
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2. Given the normal vector, the plane of the element is completely determined if 
a point in this plane is specified.  This point is taken as the point who's 
coordinates are the averages of the four original points

† 

x = 1
4 x1 + x2 + x3 + x4[ ] (2.2)

† 

y = 1
4 y1 + y2 + y3 + y4[ ]

† 

z = 1
4 z1 + z2 + z3 + z4[ ]

3.  The original points are equidistant from the equivalent plane.  The out of 
plane distance, 

† 

d , to these points is calculated as follows.

† 

d = nx (x - x1) + ny (y - y1) + nz(z - z1) (2.2)

4. The coordinates of the mean surface are calculated by adding or subtracting 

† 

d ˆ n  from each of the corner points.

† 

x 'k = xk + (-1)k+1 nxd (2.3)

† 

y 'k = yk + (-1)k+1 nyd

† 

z'k = zk + (-1)k+1 nzd
Where:

k = 1, 2, 3, or 4.

5. Now the element coordinate system must be constructed.  This requires three 
mutually perpendicular unit vectors, one of which points along each of the 
element coordinate axes and it requires the coordinates of the origin of the 
coordinate system.  The unit normal is taken as one of the unit vectors, so 
two perpendicular unit vectors in the plane of the mean surface element are 
needed.  Denote these unit vectors as 

† 

ˆ t 1 , and 

† 

ˆ t 2 .  The vector 

† 

ˆ t 1  is taken as   

† 

r 
d 31

divided by it’s own length.

  

† 

ˆ t 1 =

r 
d 31r 
d 31

(2.4)

The vector 

† 

ˆ t 2  is defined by:

† 

ˆ t 2 = ˆ n ¥ ˆ t 1 (2.5)

The vector 

† 

ˆ t 1  is the unit vector parallel to the x or 

† 

x  axis of the element 
coordinate system, while 

† 

ˆ t 2  is parallel to the y or 

† 

h axis, and 

† 

ˆ n  is parallel to 
the z or 

† 

z  axis of this coordinate system.
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6. The corner points are now transformed into the element coordinate system 
based on the average point as the origin.  These points have coordinates 

† 

(x 'k ,y' k ,z' k )  in the reference coordinate system.  Their coordinates in the 
element coordinate system are denoted by 

† 

(x k ,hk ,0) .  Because they lie in the 
plane of the element, they have zero z or 

† 

z  coordinate in the element 
coordinate system.  Also, because the vector 

† 

ˆ t 1  is a multiple of the diagonal 
vector from point 1 to 3, the coordinate 

† 

h1 and 

† 

h3  are the equal.  In the 
element coordinate system, the corner points are:

† 

xk = t1x(x - x 'k ) + t1y (y - y 'k ) + t1z(z - z' k ) (2.6)

† 

hk = t2x (x - x 'k ) + t2y (y - y 'k ) + t2 z(z - z' k ) (2.7)
Where:

k = 1, 2, 3, or 4.

These corner points are taken as the corners of a plane quadrilateral as shown 
in Figure 2.2.

Figure 2.2:  Mean Surface Element Corner Points (Ref. 2)

7. The origin of the element coordinate system is now transferred to the 
centroid of the area of the quadrilateral.  With the average point as the origin, 
the coordinates of the centroid in the element coordinate system are:

† 

x0 = 1
3

1
h2 -h4

x4(h3 -h2) + x2(h4 -h1)[ ] (2.8)

† 

h0 = - 1
3h1 (2.9)
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These are subtracted from the coordinates of the corner points to obtain the 
coordinates of the corner points in an element coordinate system that has the 
centroid as the origin.

† 

x'k =x k -x0 (2.10)

† 

h'k = hk -h0 (2.11)
Where:

k = 1, 2, 3, or 4.

8. The centroid of the mean surface element in the reference coordinate system 
is given by:

† 

x0 = x + t1xx0 + t2xh0 (2.12)

† 

y0 = y + t1yx0 + t2yh0

† 

z0 = z + t1zx0 + t2zh0

9. Finally, the area of the mean surface element quadrilateral is:

† 

A = 1
2 (x '3 -x '1)(h'2 -h'4 ) (2.13)
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3.  Definition of Boundary Conditions:

Z
Y

X

Section A-A

Section B-B

Normal to the
mean camber
surface at control
point

† 

g

(a)
Z

Y

Section A-A

† 

g

CP
† 

ˆ n 
Z

X

Section B-B

† 

ˆ n 

† 

q

(b) (c)

CP

Figure 3.1:  Geometry for the Tangency Boundary Condition (Ref. 3)

The boundary condition used in AeroLS is that the flow is tangent to the wing surface 
(Figure 3.1a).  This means that the normal component of induced velocity due to the 
network of vortices at the control point of each panel must exactly balance the normal 
component of free stream velocity.  In equation form, for each panel m, this is stated as:

  

† 

r 
V TOT ⋅ ˆ n m = 0 (3.1)
where:

  

† 

r 
V TOT =

r 
V • +

r 
V I m (3.2)

where:
  

† 

r 
V I m  = The induced velocity at the control point of panel m 

due to the circulation of all the vortices in the system.

Rearranging:
  

† 

-
r 
V I m ⋅ ˆ n m =

r 
V • ⋅ ˆ n m (3.3)

or

† 

wm = VNm (3.4)
where:

  

† 

VNm =
r 
V • ⋅ ˆ n m  = Magnitude of free stream velocity component 

normal to the panel control point.

  

† 

wm = -
r 
V I m ⋅ ˆ n m  = Downwash at the control point of panel m.
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The free stream velocity can be written in component form as:
  

† 

r 
V • =Uˆ i +Vˆ j +W ˆ k (3.5)

or
  

† 

r 
V • =V• (cosa cosb ˆ i - cosa sinb ˆ j + sina ˆ k ) (3.6)

Dotting Equation 3.6 with the panel normal vector gives the normal component of free 
stream velocity at the panel control point:

† 

VNm = V• (cosacosb ⋅ nx -cosa sinb ⋅ ny + sina ⋅ nz) (3.7)

Substituting Equations 3.7 into Equation 3.4 we get:

† 

wm = V• (cosa cosb ⋅ nx -cosa sinb ⋅ ny + sina ⋅ nz) (3.8)

Equation 3.8 only applies to the mt h panel.  If we use matrix notation, we can write a 
similar equation that accounts for all panels.

† 

w{ } = V• a N0{ } (3.9)
where:

† 

aN 0  = “angle of attack” normal to the plane of the panel.

† 

a N 0{ } = cosacosb ⋅ nx -cosa sinb ⋅ ny + sina ⋅ nz{ } (3.10)

Equation 3.9 forms the basic boundary condition for determining vortex strengths in 
Section 4.  Equation 3.10 will prove useful when determining stability derivatives.
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4.  Velocity Induced by a Horseshoe Vortex:

The velocity induced by a vortex filament of strength 

† 

G  and length dl (see Figure 4.1) is 
given by the law of Biot and Savart (Reference 3):

  

† 

d
r 
V =

G d
r 
l ¥ r r ( )

4pr3 (4.1)

The magnitude is:

† 

dV =
G sinq dl

4p r 2 (4.2)

dl

A

B

C

q

q

q

1

2
r o

r1

r

rp r2

Vorticity
Vector

Figure 4.1:  Vortex Segment Geometry

We can integrate between A and B in Figure 4.1 to get the magnitude of the induced 
velocity due to a vortex segment (Reference 3):

† 

V =
G

4p rp
sinq dq

q1

q2

Ú =
G

4p rp
cosq1 -cosq2( ) (4.3)

Let   

† 

r r 0 ,   

† 

r r 1  and   

† 

r r 2  designate the vectors 

† 

AB , 

† 

AC  and 

† 

BC  respectively as shown in 
Figure 4.1.  Then (from Reference 3):

  

† 

rp =

r r 1 ¥
r r 2

ro   

† 

cosq1 =
r r 0 ⋅

r r 1
ror1   

† 

cosq2 =
r r 0 ⋅

r r 2
ror2

(4.4a, b, c)

  

† 

direction of induced velocity =
r r 1 ¥

r r 2r r 1 ¥
r r 2

(4.4d)
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Substituting these into Equation 4.3 yields:

  

† 

V =
Gn

4p

r r 1 ¥
r r 2

r r 1 ¥
r r 2

2
r r 0 ⋅

r r 1
r1

-
r r 2
r2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ =

r 
C G (4.4)

This is the basic equation giving the induced velocity at a point in space due to a single 
vortex segment of finite length.  It can be used regardless of the orientation of the 
vortex.

We will now use Equation 4.4 to calculate the velocity that is induced at a point in space 
due to a horseshoe vortex as shown in Figure 4.2.  Figure 4.2 shows a set of 
quadrilateral panels that represent the mean camber surface of a wing.  The horseshoe 
vortex can be assumed to represent the vorticity induced by a single wing panel (e.g.:  
the nth panel).  The segment AB in Figure 4.4 represents the bound vortex and coincides 
with the 1/4 chord line of the panel n.  The trailing vortices start at the inboard and 
outboard edge of the 1/4 chord line of the panel and follow the contour of the surface 
aft to the trailing edge of the lifting surface, and then extend infinitely far aft in a 
straight line.

Bound Vortex

A
B

Wing Trailing
Edge

Trailing Vortex
from B to ∞.

Trailing Vortex
from A to ∞.Panel n

Z

Y

X

Figure 4.2:  A Conformal Horseshoe Vortex as Used in AeroLS

The induced velocity at a point in space due to the horseshoe vortex will be calculated 
by adding together the influence of each straight line segment of the horseshoe 
calculated using Equation 4.4 (see Figure 4.3).
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† 

r r 0

  

† 

r r 1

  

† 

r r 2
A

B

  

† 

r r 0

  

† 

r r 2A

D

C (x,y,z)

  

† 

r r 1
C (x,y,z)

C (x,y,z)

  

† 

r r 0

  

† 

r r 1
  

† 

r r 2
D

E

C (x,y,z)

  

† 

r r 0

  

† 

r r 1

E

  

† 

r r 2 F

Figure 4.3:  Vector Elements for Calculation of Induced Velocity

For the bound vortex segment 

† 

AB , the vectors used in Equation 4.4 are defined as:
  

† 

r r 0 = AB = (xBn - xAn)ˆ i + (yBn - yAn )ˆ j + (zBn - zAn) ˆ k (4.5a)
  

† 

r r 1 = (x - xAn)ˆ i + (y - yAn) ˆ j + (z - zAn) ˆ k (4.5b)
  

† 

r r 1 = (x - xBn)ˆ i + (y - yBn) ˆ j + (z - zBn) ˆ k (4.5c)

For the panel side edge vortex segment, from the panel trailing edge to the panel 1/4 
chord, 

† 

DA , the vectors used in Equation 4.4 are defined as:
  

† 

r r 0 = DA = (xAn - xDn)ˆ i + (yAn - yDn )ˆ j + (zAn - zDn ) ˆ k (4.6a)
  

† 

r r 1 = (x - xDn)ˆ i + (y - yDn) ˆ j + (z - zDn) ˆ k (4.6b)
  

† 

r r 1 = (x - xAn)ˆ i + (y - yAn) ˆ j + (z - zAn) ˆ k (4.6c)

Next we need to step from one panel to another until we reach the trailing edge of the 
lifting surface.  In the example shown in Figure 4.3, there is only one panel between the 
panel being evaluated and the trailing edge.  For the next aft panel side edge vortex 
segment, from the panel trailing edge to the panel leading edge, 

† 

ED , the vectors used 
in Equation 4.4 are defined as:

  

† 

r r 0 = ED = (xDn - xE n)ˆ i + (yDn - yEn )ˆ j + (zDn - zEn) ˆ k (4.7a)
  

† 

r r 1 = (x - xE n)ˆ i + (y - yE n) ˆ j + (z - zEn) ˆ k (4.7b)
  

† 

r r 1 = (x - xDn)ˆ i + (y - yDn) ˆ j + (z - zDn) ˆ k (4.7c)
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If there were more than one panel between the nth panel and the lifting surface trailing 
edge, Equation 4.4 would have to be evaluated for each segment.

For the filament that extends from the lifting surface trailing edge, E in Figure 4.3, to ∞, 
Reference 4 shows that it is sufficiently accurate to approximate the infinite length 
vortex filament using a finite length segment that extends from E to F and then use 
Equation 4.4 directly.  In this case, point F is placed an arbitrary, but large distance aft 
(AeroLS uses 100 times the largest Y coordinate in the input geometry).  For the vortex 
segment  trailing from infinity to the lifting surface trailing edge, 

† 

FE , the vectors used 
in Equation 4.4 are defined as:

  

† 

r r 0 = FE = (xE n - xFn)ˆ i + (yE n - yFn) ˆ j + (zEn - zFn) ˆ k (4.8a)
  

† 

r r 1 = (x - xFn)ˆ i + (y - yFn) ˆ j + (z - zFn ) ˆ k (4.8b)
  

† 

r r 1 = (x - xE n)ˆ i + (y - yE n) ˆ j + (z - zEn) ˆ k (4.8c)

The calculations, using Equation 4.4, for each of these segments is then repeated for the 
trailing vortices on the other, outboard, side of the nth panel and the outboard side of all 
the panels downstream of the nth panel.

The total velocity induced at some point (x, y, z) by the horseshoe vortex representing a 
surface element (e.g.: for the nth panel) is the sum of the components:  bound plus each 
side edge of panel n plus each side edge of all downstream panels plus each trailing 
edge to ∞.  Let the point (x, y, z) be the control point of the mth panel with coordinates 
(xm, ym, zm).  The velocity induced at the mth control point by the vortex representing 
the nth panel will be:

  

† 

r 
V I m,n =

r 
C m ,nGn (4.9)

Where:
  

† 

r 
C m ,nGn = The induced velocity at the control point of panel m 

induced by all the vortex segments associated with 
panel n.

The component of Equation 4.9 normal to the panel containing the control point is:

  

† 

r 
V I m ,n ⋅ ˆ n m =

r 
C m,n ⋅ ˆ n m( )Gn (4.10)

Now we introduce the downwash parameter, 

† 

wm ,  as we did in Section 3:

  

† 

wm = -
r 
V I m ⋅ ˆ n m = -

r 
V I m ,n

n=1

n=2N

Â ⋅ ˆ n m (4.11)

and:
  

† 

Wm ,n = -
r 
C m ,n ⋅ ˆ n m  (4.12)

Where:

† 

Wm ,n is the downwash on panel m due to a unit circulation on 
panel n.
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We can put Equations 4.10, 4.11 and 4.12 together into matrix notation for all panels as 
follows:

† 

w{ } = W[ ] G{ } (4.13)

Equation 4.13 reads:  the downwash, 

† 

w{ } , on each panel is equal to the downwash 
matrix, 

† 

W[ ] , times the vortex circulation strengths of each panel, 

† 

G{ } .

The downwash matrix can be calculated from Equation 4.12 by setting the circulation 
strengths (

† 

G ) in Equation 4.4 to 1.0.  For every panel, m,  sum up the induced velocity of 
unit circulation strengths associated with all the vortex segments of another panel, n.  
The component (dot product) of that induced velocity normal to the panel is the 
downwash on panel m due to a unit circulation strength associated with panel n.  The 
downwash matrix is a function of geometry alone.

† 

w{ }  is calculated from the boundary condition of Equation 3.9 and is a function of the 
flight condition (angle of attack, angle of sideslip) and possibly flap deflection via 
modification of the panel normal vectors.

With the downwash vector and the downwash matrix known, it is now possible to 
solve for the vortex circulation strengths, 

† 

G{ } , that make Equation 4.13 true.  This could 
be done using any standard linear algebra library and involves calculating the inverse 
of the downwash matrix.  However, it is more computationally efficient to hold off 
solving the system of equations until you are ready to find the loads on the panels in 
the next section.
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5.  Calculation of Loads and Aerodynamic Coefficients:

The component of load normal to each panel can be written as (Reference 5):

† 

LN{ } = rV• b[ ] G{ } (5.1)
where:

† 

LN{ }  = The component of load normal to each panel’s surface
r = The air mass density

† 

V•  = The free stream velocity magnitude

† 

b[ ]  = A diagonal vector containing the true (not projected) span of 
each panel.

† 

G{ }  = Vortex circulation strength associated with each panel.

By combining Equations 4.13 and 3.9 and rearranging, we can see that

† 

G{ } =V• W[ ]-1
a N 0{ } (5.2)

If we substitute Equation 5.2 into Equation 5.1 we get:

† 

W[ ] LN{ } = 2q b[ ] a N 0{ } (5.3)
where:

† 

q = 1
2 rV•

2  = Dynamic pressure

If we cast Equation 5.3 in terms of a “panel normal load coefficient”, by dividing 
through by the reference area and the dynamic pressure, we get:

† 

W[ ] CLN{ } =
2

SRe f
b[ ] aN 0{ } (5.4)

where:

† 

CLN{ }  = The load coefficient normal to each panel’s surface.

† 

SRe f  = The reference wing area

Equation 5.4 is a system of linear equations where the unknowns are the vector of load 
coefficients, 

† 

CLN{ } , one for each panel.  Equation 5.4 is efficiently solved using a linear 
algebra system of equations solver.
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Once the normal load coefficient at each panel has been computed, the aerodynamic 
coefficients can be computed as follows:

The force normal to the aircraft body X-axis (Fz) is the sum of the forces normal to the 
surface of each panel times the Z component of the normal vector of each panel.

† 

Fz = LN{ } nz{ }
2N
Â (5.5)

Where:

† 

nz{ } =Z component of the normal vector of each panel.

In terms of normal force coefficient (CN or Cz – force coefficient in the positive Z or 
upward direction):

† 

CN = Cz = CLN{ }
n=1

2N

Â nz{ } =
2

SRe f
W[ ]-1 b[ ] a N{ } nz{ }

n=1

2N

Â (5.6)

If symmetry is assumed, and a symmetric downwash matrix is computed, then:

† 

CN = 2 CLN{ } nz{ }
n=1

N

Â (5.7)

Since this method is inviscid, and the angles of camber/slope tend to be small, axial 
force, Fx, is usually near zero.  However, AeroLS calculates it anyway using the 
following equations:

† 

Fx = LN{ } nx{ }
2N
Â (5.8)

Where:

† 

nx{ } =X component of the normal vector of each panel.

In terms of body axial force coefficient (CA or Cx – force coefficient in the positive X  or 
aft direction):

† 

CA = Cx = CLN{ }
n=1

2N

Â nx{ } (5.9)

If symmetry is assumed, and a symmetric downwash matrix is computed, then:

† 

CA = 2 CLN{ } nx{ }
n=1

N

Â (5.10)

The body axis side force, Fy, is the sum of the forces normal to the surface of each panel 
times the Y component of the normal vector of each panel:

† 

Fy = LN{ }
2N
Â ny{ } (5.11)

Where:

† 

ny{ } =Y component of the normal vector of each panel.
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In terms of body side force coefficient (CYb or Cy – force coefficient in the positive Y  
or starboard direction):

† 

CYb = Cy = CLN{ }
n=1

2N

Â ny{ } (5.12)

If anti-symmetry is assumed, and an anti-symmetric downwash matrix is used to 
calculate the normal load coefficient on each panel, then:

† 

CYb = 2 CLN{ } ny{ }
n=1

N

Â (5.13)

With the body axis forces (Fx, Fy, & Fz, or CN, CA, and CYb) known, it is possible to 
resolve them into the wind axis force coefficients as follows:

† 

CL = CN cosa - CA sina (5.14)

† 

CD = CN sinacosb + CA cosacosb -CYb sinb (5.15)

† 

CY = CN sina sinb + CA cosa sinb + CYb cosb (5.16)

These can be further resolved into stability axis coefficients using the following 
equations:

† 

CLSA
= CL (5.17)

† 

CDSA
= CD cosb -CY sinb (5.18)

† 

CYSA
= CY cosb + CD sinb (5.19)

The body-axis pitching moment is the sum of the normal forces (in the Z direction) on 
each panel times the moment arm of each panel in the X direction:

† 

M = - X - XC.G .[ ]
2N
Â Fz{ } (5.20)

Where:
M = Pitching moment about body Y axis (positive nose up).
X = The X location of the 1/4 mean geometric chord of each panel.
XC.G. = The X location of the reference point or center of gravity.

or, in coefficient form, assuming symmetry:

† 

CMb = -
2

cRe f
nz X - XC.G .( )[ ] CLN{ }

n=1

N

Â (5.21)
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The body-axis rolling moment (positive starboard wing down) is the sum of the panel 
forces in the body Y direction times the Z moment arm minus the sum of the panel 
forces in the Z direction times the Y moment arm:

  

† 

L = Z - ZC.G .[ ] Fy{ } - Y -YC.G .[ ] Fz{ } (5.22)
or

  

† 

L = Z - ZC.G .[ ] ny{ }- Y -YC .G .[ ] nz{ }( ) LN{ } (5.23)
Where:

L = Rolling moment about body X-axis (positive right wing down).
Z = The Z location of the 1/4 mean geometric chord of each panel.
ZC.G. = The Z location of the reference point or center of gravity.
Y = The Y location of the 1/4 mean geometric chord of each panel.
YC.G. = The Y location of the reference point or center of gravity.

or, in coefficient form, assuming anti-symmetry:

† 

Clb = 2 ny Z - ZC .G .( ) - nz Y -YC.G .( )[ ] CLN{ }
n=1

N

Â (5.24)

Finally, the body-axis yawing moment (positive starboard wing aft) is the sum of the 
panel forces in the body Y axis direction times the X moment arm:

† 

N = - X - XC .G.[ ] Fy{ }
2N
Â (5.25)

Where:
N = Yawing moment about body Z-axis (positive right wing aft).

or, in coefficient form, assuming anti-symmetry:

† 

Cnb = -2 ny X - XC.G .( )[ ] CLN{ }
n=1

N

Â (5.26)

With the body axis moments (CMb, Clb, and Cnb) known, it is possible to resolve them 
into the wind axis moment coefficients as follows:

† 

CM = CMb cosb - Clb
b ref
cref

cosa sinb - Cnb
bref
cref

sina sinb (5.27)

† 

Cl = CMb
cref
bref

sinb + Clb cosa cosb + Cnb sinacosb (5.28)

† 

Cn = Cnb cosa -Clb sina (5.29)

These can be further resolved into stability axis coefficients using the following 
equations:

† 

CM SA
= CM cosb -Cl

b ref
cref

sinb (5.30)

† 

ClSA
= CM

cref
b ref

sinb + Cl cosb (5.31)

† 

Cn SA
= Cn (5.32)
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6.  Calculation of a and b Stability Derivatives:

Many stability derivatives can be found analytically from the underlying equations that 
make up the vortex lattice method, and so do not have to be found by differencing as is 
done in other types of analysis.

It is of interest to find the lift curve slope, 

† 

CLa
= CNa a=0

, and the body axis pitching 
moment curve slope, 

† 

CMba
.  Let’s derive the calculation of normal force slope as an 

example:

† 

CN a
=

∂CN

∂a
(6.1)

From Equation 5.7, it can be seen that:

† 

∂CN

∂a
= 2

∂CLN

∂a

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

nz{ }
n=1

N

Â (6.2)

From Equation 5.4, it can be seen that:

† 

W[ ]
∂CLN

∂a

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
2

SRe f
b[ ]

∂aN 0

∂a

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(6.3)

And finally, from Equation 3.10 it can be seen that:

† 

∂aN 0

∂a

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

= -sinacosb ⋅ nx + sina sinb ⋅ ny + cosa ⋅ nz{ } (6.4)

Notice that Equations 6.2, 6.3, and 6.4 are identical in form to the original equations 
used to calculate the normal force coefficient in Section 5.  The solution process is 
identical.  In fact, the exact same algorithms and subroutines can be used to calculate 
normal force coefficient or normal force coefficient slope by simply substituting 
equation 6.4 for equation 3.10 in the original formulation.  This is the approach used by 
AeroLS.

Just as in the original formulation, once you have solved for the value of 

† 

∂CLN

∂a
 at every 

panel, all the alpha stability derivatives can be calculated using the same summations 
used for the forces & moments in Section 5.

The same process can be repeated to calculate 

† 

CMba
.
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Likewise, for the sideslip derivatives, using side force as an example:

† 

CYbb
=

∂CYb

∂b
(6.5)

From Equation 5.13, it can be seen that:

† 

∂CYb

∂b
= 2

∂CLN

∂b

Ï 
Ì 
Ó 

¸ 
˝ 
˛ n=1

N

Â ny{ } (6.6)

From Equation 5.4, it can be seen that:

† 

W[ ]
∂CLN

∂b

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
2

SRe f
b[ ]

∂aN 0

∂b

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(6.7)

And finally, from Equation 3.10 it can be seen that:

† 

∂aN 0

∂b

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

= -cosa sinb ⋅ nx -cosacosb ⋅ ny + 0 ⋅ nz{ } (6.8)

Just as with the alpha derivatives, the exact same process is used to calculate the sideslip 
derivatives as the lateral-directional forces and moments.  The only change is 
substituting Equation 6.8 for Equation 3.10.

This same process can be repeated for 

† 

Cnb b
 and 

† 

Clbb
.

This same technique can be used to find the control derivatives associated with a flap or 
control surface deflection by taking the derivative of Equation 3.10 with respect to the 
control surface deflection of interest and then solving for all the panel load slopes and 
control derivatives in exactly the same manner as outlined above.  In the case of a flap 
or control surface deflection, the slopes would be in the normal vector components.  
AeroLS does not yet calculate control surface derivatives.
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7.  Calculation of Rotary Stability Derivatives:

7.1 Pitch Damping
(Taken from Reference 5)

Pitch damping derivatives are based on the pitch rate angle, 

† 

ˆ q :

† 

ˆ q =
Q ⋅ cRe f

2V•

(7.1)

Where:
Q = Aircraft pitch rate in radians/second.

† 

V• = Free stream true air speed (units consistent with 

† 

cRe f  and Q).

Consider an airplane at constant speed, angle of attack, and pitch rate.  It must be flying 
at constant radius, r, about a point and:

† 

Q =
V•

r
(7.2)

Lay out a length 

† 

cRe f 2  along the X-axis, then the pitch rate angle is defined as shown in 
Figure 7.1.

† 

r =
V•

Q
        

† 

cRe f

2r
=

QcRe f

2V•

= ˆ q 

q

r

QV

c
2

Figure 7.1:  Definition of Pitch Rate Angle (Ref. 5)

The airplane “sees” an apparent curvature of the airflow.  The local flow angle varies 
along the length of the airplane.  Flow angle due to pitch rate is then:

† 

aQ{ } = X - XC .G .{ }
Q
V•

(7.3)

Where:

† 

aQ{ } =  The component of angle of attack at each panel due to pitch 
rate.
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The component of angle of attack, normal to each panel, due to pitch rate is then:

† 

aQ N{ } = X - XC.G .[ ] nz{ }
Q
V•

(7.4)

or

† 

aQ N{ } =
2

cRe f
X - XC.G .[ ] nz{ }

QcRe f

2V•

(7.5)

or

† 

aQ N{ } =
2

cRe f
X - XC.G .[ ] nz{ } ⋅ ˆ q (7.6)

This can be treated just like a camber vector.  Think of it as curving the airplane rather 
than the airflow. Equation 7.6 can be added to Equation 3.10 to get:

† 

a N{ } = a N0{ } + aQN{ } (7.7)

By substituting this equation for 

† 

a N{ }  in place of 

† 

a N0{ }  in Equation 3.9, the effect of a 
constant pitch rate can be taken into account in computing forces and moments.

It is of interest to compute the change in lift with a change in pitch rate angle, 

† 

CL ˆ q 
:

† 

CL ˆ q 
= CN ˆ q a=0

=
∂CN

∂ ˆ q 
(7.8)

From Equation 5.7, it can be seen that:

† 

∂CN

∂ˆ q 
= 2

∂CLN

∂ ˆ q 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

nz{ }
n=1

N

Â (7.9)

From Equation 5.4, it can be seen that:

† 

W[ ]
∂CLN

∂ˆ q 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
2

SRe f
b[ ]

∂aN

∂ˆ q 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(7.10)

Finally, from Equation 7.6 and 7.7, it can be seen that:

† 

∂aN

∂ˆ q 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
∂aQN

∂ ˆ q 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
2

cRe f
X - XC .G .[ ] nz{ } (7.11)

Again, as with the angle of attack stability derivatives, the pitch damping derivatives 
can be calculated using exactly the same process as the longitudinal forces and 
moments, but with the substitution of Equation 7.11 for Equation 3.10.

The same process is used to compute 

† 

CMb ˆ q 
.
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7.2 Yaw Damping
(Taken from Reference 5)

The yaw damping phenomena is similar to the pitch damping except that the point, 
about which the airplane is flying, is the in the X-Y plane instead of the X-Z plane and 
the reference length is the reference span rather than the chord. Yaw rate angle, 

† 

ˆ r  is:

† 

ˆ r =
R ⋅ bRe f

2V•

(7.12)

Where:
R = Aircraft yaw rate in radians/second.

† 

V• = Free stream true air speed (units consistent with 

† 

bRe f  and R).

Consider an airplane at constant speed, angle of sideslip, and yaw rate.  It must be 
flying at constant radius, r, about a point and:

† 

R =
V•

r
(7.13)

Lay out a length 

† 

bRe f 2  along the X-axis, then the yaw rate angle is defined as shown in 
Figure 7.2.

r

V

b
2

r

R

† 

r =
V•

R
        

† 

bRe f

2r
=

RbRe f

2V•

= ˆ r 

Figure 7.2:  Definition of Yaw Rate Angle (Ref. 5)

The airplane “sees” an apparent curvature of the airflow.  The local flow angle varies 
along the length of the airplane.  Flow angle, or sidewash, due to yaw rate is then:

† 

bR{ } = - X - XC.G .( )2
+ Y -YC.G .( )2Ï 

Ì 
Ó 

¸ 
˝ 
˛ 

R
V•

(7.14)

Where:

† 

bR{ } =  The component of sideslip at each panel due to yaw rate.
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The component of sidewash, normal to each panel, due to yaw rate is then:

† 

bRN{ } = - X - XC.G.[ ] ny{ }+ Y -YC .G.[ ] nx{ }( ) R
V•

(7.15)

or

† 

bRN{ } =
-2

bRe f
X - XC.G.[ ] ny{ } + Y -YC .G .[ ] nx{ }( ) R bRe f

2V•

(7.16)

or

† 

bRN{ } =
-2

bRe f
X - XC.G.[ ] ny{ } + Y -YC .G .[ ] nx{ }( ) ⋅ ˆ r (7.17)

This can be treated just like a camber vector.  Just as in pitch damping, think of it as 
curving the airplane rather than the airflow. Equation 7.17 can be added to Equation 
3.10 to get:

† 

a N{ } = a N0{ } + b RN{ } (7.18)

By substituting this equation for 

† 

a N{ }  in place of 

† 

a N0{ }  in Equation 3.9, the effect of a 
constant yaw rate can be taken into account in computing forces and moments.

It is of interest to compute the change in side force with a change in yaw rate angle, 

† 

CYˆ r 
:

† 

CYˆ r 
= CY ˆ r b=0

=
∂CY

∂ˆ r 
(7.19)

From Equation 5.13, it can be seen that:

† 

∂CY

∂ˆ r 
= 2

∂CLN

∂ˆ r 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

ny{ }
n=1

N

Â (7.20)

From Equation 5.4, it can be seen that:

† 

W[ ]
∂CLN

∂ˆ r 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
2

SRe f
b[ ]

∂aN

∂ˆ r 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(7.21)

Finally, from Equation 7.17 and 7.18, it can be seen that:

† 

∂aN

∂ˆ r 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
∂bR N

∂ˆ r 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
-2

bRe f
X - XC .G .[ ] ny{ } + Y -YC .G .[ ] nx{ }( ) (7.22)

Again, as with the pitch damping derivatives, the yaw damping derivatives can be 
calculated using exactly the same process as the longitudinal forces and moments, but 
with the substitution of Equation 7.22 for Equation 3.10.

The same process is used to compute 

† 

CNb ˆ r 
 and 

† 

Clb ˆ r 
.
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7.3 Roll Damping
(Taken from Reference 5)

The roll damping derivatives are computed with respect to the wing tip helix angle, 

† 

ˆ p :

† 

ˆ p =
P ⋅ bRe f

2V•

(7.23)

Where:
P = Aircraft roll rate (about the -X axis) in radians/second.

† 

V• = Free stream true air speed (units consistent with 

† 

bRe f  and P).

Roll rate adds a component of angle of attack and sideslip over the surface of the 
airplane.  The airplane “sees” an apparent curvature of the airflow.  The local flow angle 
varies along the length and height of the airplane.  Flow angle, or alpha, due to roll rate 
is then:

† 

a P{ } = Y -YC.G .( )2
+ Z - ZC .G.( )2Ï 

Ì 
Ó 

¸ 
˝ 
˛ 

P
V•

(7.24)

Where:

† 

a P{ } =  The component of alpha & beta at each panel due to roll 
rate.

The component of flow, normal to each panel, due to roll rate is then:

† 

a PN{ } = Y -YC.G .[ ] nz{ } - Z - ZC .G .[ ] ny{ }( ) P
V•

(7.25)

or

† 

a PN{ } =
2

bRe f
Y -YC .G .[ ] nz{ }- Z - ZC.G.[ ] ny{ }( ) P bRe f

2V•

(7.26)

or

† 

a PN{ } =
2

bRe f
Y -YC .G .[ ] nz{ }- Z - ZC.G.[ ] ny{ }( ) ⋅ ˆ p (7.27)

This can be treated just like a camber vector (twisting the airplane).  Just as in pitch 
damping, think of it as curving the airplane rather than the airflow. Equation 7.27 can 
be added to Equation 3.10 to get:

† 

a N{ } = a N0{ } + aPN{ } (7.28)

By substituting this equation for 

† 

a N{ }  in place of 

† 

a N0{ }  in Equation 3.9, the effect of a 
constant roll rate can be taken into account in computing forces and moments.

It is of interest to compute the change in side force with a change in roll rate angle, 

† 

CY ˆ p 
:

† 

CY ˆ p 
= CY ˆ p b =0

=
∂CY

∂ˆ p 
(7.29)
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From Equation 5.13, it can be seen that:

† 

∂CY

∂ˆ p 
= 2

∂CLN

∂ˆ p 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

ny{ }
n=1

N

Â (7.30)

From Equation 5.4, it can be seen that:

† 

W[ ]
∂CLN

∂ˆ p 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
2

SRe f
b[ ]

∂aN

∂ˆ p 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(7.31)

Finally, from Equation 7.27 and 7.28, it can be seen that:

† 

∂aN

∂ˆ p 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
∂a PN

∂ˆ p 
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
2

bRe f
Y -YC.G.[ ] nz{ }- Z - ZC.G .[ ] ny{ }( ) (7.32)

Again, as with the pitch and yaw damping derivatives, the roll damping derivatives can 
be calculated using exactly the same process as the longitudinal forces and moments, 
but with the substitution of Equation 7.32 for Equation 3.10.

The same process is used to compute 

† 

CNb ˆ p 
 and 

† 

Clb ˆ p 
.
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